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Chapter 1

Introduction

1.1 Project Summary

1.1.1 Scope

The scope of this research contract was the development of CAD tools that can compute
statistical information (in particular, mean and variance) about the power dissipated in a
continuous-time or switched-capacitor circuit, when the inputs to the circuit belong to a
class of signals whose statistics are given. Specifically, two power estimation CAD programs
were developed: one for continuous-time analog circuits, the other for switched-capacitor
circuits. Those tools were integrated into an existing commercial CAD environment, namely
CADENCE’s Design Framework II.

1.1.2 Research into Power Estimation Algorithms

This task involved the theoretical study of the algorithms on which the power estimation tools
rely. This task developed a sound mathematical theory of power estimation in continuous-
time and switched-capacitor circuits. Based on this theory, it was possible to establish a
confidence level in the power dissipation estimates given by the developed tools.

1.1.3 Development of Power Estimation Tools

This task involved the development of software based on the algorithms studied as a part
of the previous task. This software consists of a CAD program for power estimation in
continuous-time analog circuits, and another program for power estimation in switched-
capacitor circuits. Those tools were integrated into an existing commercial CAD environ-
ment, CADENCE’s Design Framework 1. CADENCE has developed a set of tools, called
Open Simulation System, to encapsulate third-party CAD tools into their design environ-
ment.

In order to verify the performance of the developed CAD tools, a set of benchmark circuits
was collected. Care was taken to ensure that this set includes circuits that are representative
of actual industrial designs.




1.1.4 Generation of Documentation, Papers and Reports

Use of the software will be illustrated later in this report on examples taken from the set
of collected benchmark circuits. The theoretical and experimental results obtained in the
course of the proposed research effort were also presented in journal and conference papers.
The results attained by this research project are summarized in this final report.

1.2 Innovative Claims

Most (if not all) of the published work on CAD tools for power estimation concerns itself
only with digital circuits. However, many emerging product technologies, such as personal
computing and communication systems, involve mixed signal processing. The goal of the pro-
posed research was to develop power estimation CAD tools for continuous-time and switching
analog systems. Note that ordinary circuit simulators (such as SPICE) are not suited for
that task, because they can only compute the power dissipated by the circuit for one specific
set of input signals. In contrast, the goal of the research effort described here was to de-
velop CAD tools that can compute statistical information (in particular, mean and variance)
about the power dissipated in a continuous-time or switched-capacitor circuit for a variety
of input signals (whose statistics are given). This approach mirrors the one generally used
to estimate power dissipation in digital CMOS circuits. This approach has the following
distinguishing features:

No restrictions on the type of circuit: The methods used to estimate power dissipa-
tion are completely general, and they do not rely on any particular assumptions about
the type of circuit under consideration (other than it contain no distributed ele-
ments). As such, this methodology can be applied to a large class of circuits, including
continuous-time and switched-capacitor filters, RF mixers and amplifiers, phase-locked
loops, and so on.

Arbitrary granularity: The method used computes at once statistics for all voltages and
currents in the circuit. As a consequence, power dissipation can be estimated with the
same confidence at any desired granularity, down to the component level, if necessary.
Moreover, an increase in the granularity of the estimation has only a marginal effect
on the total computational effort.

No Monte-Carlo analyses required: The proposed algorithm gives the statistics of all
voltages and currents of interest as the solutions of certain sets of linear, algebraic
equations (even if the circuit in question is nonlinear and not memoryless). The only
operations involved are numerical solution of linear equations (e.g. by Gaussian elimi-
nation) and numerical quadrature (to evaluate some of the coefficients of the equations
to be solved). Therefore, no Monte-Carlo analyses or time-domain simulations of the
circuit involved are required. Note that a Monte-Carlo approach to power estimation
in analog circuits would be extremely computationally intensive, because collecting
each sample would require a time-domain simulation of the circuit involved.
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No need to assume uncorrelated inputs: Many of the published power estimation al-
gorithms for digital circuits make the assumption that the primary inputs to the circuit
are statistically independent (e.g., [1]). In some cases, this may be an unrealistic as-
sumption (e.g., when the inputs are signals generated by optical sensors which are part
of an optical array). Algorithms that do not rely on the uncorrelation assumption are
significantly more expensive in terms of computational effort required [2]. In contrast,
the algorithms used by our power estimation tools allow the primary inputs to the
circuit to be correlated without affecting the overall computational cost.

No memoryless assumption: The vast majority of power estimation algorithms for dig-
ital circuits assume instantaneous transitions. While this approximation is acceptable
for the purpose of power estimation when dealing with digital or switched-capacitor
circuits, it is clearly no longer so in the case of continuous-time analog circuits. The
algorithm used by our power estimation tools takes the dynamics of the circuit into
full account.

Integration with other tools: CADENCE’s Open Simulation System is a set of tools to
encapsulate third-party analysis tools into CADENCE’s Design Framework II envi-
ronment. In particular, the SKILL language allows external access to the databases
used by other CADENCE tools. Our power estimation tools were integrated into CA-
DENCE'’s Design Framework II. In this way, it is possible to use them in conjunction
with other tools, such as power estimators for digital circuit, thus enabling designers
to estimate power consumption in complex mixed-signal systems.




Chapter 2

Development of Power Estimation
Tools

2.1 Choice of HDL

Cadence’s Design Framework IT serves as a front-end to the power estimation tools developed
as a result of this research project. For this purpose, it was necessary to develop a suitable
interface between our tools and the Cadence environment. It was determined that the best
way to achieve this goal is to exploit Cadence’s Open Simulation System (OSS), which
allows the integration of third-party CAD tools into the Cadence system. OSS provides
a user interface for controlling the execution of simulation, the generation of netlists and
input vectors, and the display of the simulation results which is consistent with the interface
used by the other tools in the Design Framework II environment. Specifically, OSS provides
two tools to generate netlists in textual format: a Hierarchical NetLister (HNL) and a Flat
NetLister (FNL). Both netlisters are capable of producing output in a user-defined format,
described using the Cadence standard language, SKILL.

The netlist format depends upon the choice of the Hardware Description Language to be
used. Several factors must be considered, such as portability, popularity among CAD tool
users, syntactic structure, and so on. Design Framework II has its own analog hardware de-
scription language (HDL), called SpectreHDL, which is understood by Cadence’s simulator
SPECTRE. SpectreHDL was the first language we considered using for our front-end. How-
ever, this idea was set aside after we found out that SpectreHDL is a proprietary language,
in order to avoid the legal complications that the use of a proprietary language would entail.
Similar considerations ruled out the use of other proprietary languages, such as Analogy’s
MAST and Anacad’s A-VHDL. '

Languages that are widespread and in the public domain are preferable to proprietary
languages whose use is not very common. In this respect, a SPICE-like language would seem
to be the best choice. There are a number of SPICE-like languages in the public domain
which might have been used, possibly with some minor modifications, for our front-end. On
the other hand, it is much easier to write a netlist generator and a parser for a structured
language like VHDL than for a completely unstructured one, like the SPICE family. On the
other hand, SPICE-like languages are very unstructured, which makes it difficult to write
netlist generators and parsers for them. Moreover, every commercial CAD vendor seems to
have its own version of the SPICE language, which is always different in some respect from
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those used by other vendors.

Taking all these considerations into account, we concluded that the two best candidates
were Verilog-A and VHDL-A, both of which are analog extension (still under development)
of the corresponding digital languages. Both languages are in the public domain, are widely
used by a variety of commercial CAD tools, and industry-wide standards for their analog
extensions are currently being developed. Moreover, LEX and YACC files to write a VHDL
parser are already publicly available, and with only minor modifications to them it would
be possible to obtain a VHDL-A parser fairly easily. These considerations led us to choose
VHDL-A as the interface language between the Design Framework II and our software tools,
even if a standard for that language is still under development. Drafts of the proposed
language semantics were obtained from the 1076.1 IEEE subcommittee, which is in charge
of VHDL-A development. The language to be used by our tools is based on those drafts.
When the final version of the VHDL-A standard is officially released, it should be possible
to make our language conform to the adopted standard with only minor modifications.

2.2 Netlist Generation

Our tools will interface with the Cadence Design Framework II environment through Ca-
dence’s Open Simulation System (OSS). Among other things, OSS has the capability to
generate automatically from the Cadence database a netlist formatted according to user
specifications. Our plan was to use OSS to generate VHDL-A netlists from Cadence’s Com-
poser (their schematic capture tool), and then have our tools use the VHDL-A netlists as
input. As this sequence of operations can be performed in a completely automated way, the
whole process is completely transparent to the user.

Cadence’s Design Framework Il supports netlist generation in user-defined formats through
customizable functions that must be written in Cadence’s SKILL language. These functions
as a whole constitute as so called “output formatter.” The functions necessary to traverse the
design database are included in the Design Framework II. After setting the output variables,
the netlister traverses the database and builds a list of all the cells that must be placed in
the netlist. For each cell, the traversal functions call one of the output formatter’s function
to generate appropriate output corresponding to that portion of the design.

In order to write a netlister suitable for our purposes, we had to become familiar with
Composer, one of Cadence’s schematic entry tools. We also learned the basics of the Cadence
language named SKILL and the of the hierarchical netlister tool HNL. As explained above, a
knowledge of SKILL is necessary to understand and write appropriate netlister functions that
will map the various names, nodes and subcircuit descriptions found in the circuit schematic
to the netlist format. Then, using Cadence-supplied files as templates, we wrote a set of
netlisting functions that generate output in VHDL-A from Cadence schematic diagrams. As
an example, the circuit whose diagram is shown in Fig. 1 generates the following output:

architecture structural of amplifier is
begin
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Figure 1: A Sample Schematic from Cadence’s Design Framework I

vcii6: VCI generic map (15)

port map (p => out, m => gnd, cp => out, cm => out) ;

c6: capacitor generic map (le-12)

port map (p => out, m => gnd);

r5: resistor generic map (1000)

port map (p => net15, m => out);

pmpl: pmos generic map (2e-05, 2e-05)

port map (D => vdd, G => vdd, S => net19, B => vdd) ;

nmni0: nmos generic map (5e-06, 1e-05)

port map (D => net13, G => i1, S => neti5, B => gnd) ;

nmn9: nmos generic map (5e-06, 1e-05)

port map (D => net15, G => vdd, S => vdd, B => gnd) ;

nmn3: nmos generic map (1le-05, 4e-05)

port map (D => net19, G => i2, § => netll, B => gnd);

nmn0: nmos generic map (le-05, 1e-05)

port map (D => net13, G => netil, S => gnd, B => gnd);
end structural;

A partial listing of the SKILL files that make up the netlister is given in Appendix 1.

2.3 HDL Parser

To generate a parser for the netlists produced by our netlister, we relied on the lexical
analyzer generator LEX [3] and on the parser generator YACC [4]. LEX is a program generator
designed for lexical processing of character input streams. It accepts a high-level, problem




oriented specification for character string matching, and produces a program in a general
purpose language which recognizes regular expressions. The regular expressions are specified
by the user in the source specifications given to LEX. The LEX written code recognizes these
expressions in an input stream and partitions the input stream into strings matching the
expressions. The program that recognizes the expressions is generated in the C programming
language.

YAcCC provides a general tool for imposing structure on the input to a computer program.
The YACC user prepares a specification of the input process: this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine
to do the basic input. YACC then generates a function to control the input process. This
function, called a parser, calls the user-supplied low-level input routine (the lexical analyzer
generated by LEX) to pick up the basic items (tokens) from the input stream. These tokens
are organized according to the input structure rules, called grammar rules: when one of
these rules has been recognized, then user code supplied for this rule is invoked. In this way,
the behavior of the parser can be tailored to the user’s needs. Both LEX and YAcCC are
standard commands in most UNIX-derived operating systems, and have been extensively
used to implement compilers for the most disparate tasks.

As mentioned earlier, one reason that led us to choose VHDL-A as the input language
for our tools was the availability of LEX and YAcC files for VHDL. Because VHDL-A is an
extension of VHDL, we were able to use those files as a starting point to generate a lexical
analyzer and a parser suitable for our purposes. In particular, the VHDL LEX file was written
at the University of Dortmund, Germany, based on a scanner included in the ALLIANCE
CAD toolset, which is a product of the MASI/CAO-VLSI CAD Team, Universite Pierre
et Marie Curie, Paris, France. This file required only minor modifications to adapt it to
VHDL-A. The YAcc file, on the other hand, was not readily modifiable to suit our needs.
As we did not need a parser for the complete VHDL-A language, but only for a small subset
of it, we decided that it would be faster and easier to write our own YACC file, using the
VHDL Yacc file only as a template.

We now have LEX and YAcCC files that can be used to parse netlists, such as the one
shown in Section 2.2, generated by the netlister that we wrote for Cadence’s Framework II
environment. These files provide us with a working interface with the Cadence environment:
for reference purposes, a listing of those files is given in Appendix 2.

2.4 Development of a hierarchical netlister

The development of a hierarchical netlister that generates VHDL-A output was completed.
This included modifying some SKILL code already written so that the netlister’s output
would conform to the current VHDL standard, and to extract parameter names and values
directly from cell properties. The data that must be generated by the netlister includes
information that is specific to each element in the netlist (e.g., the number and the names
of terminals, the names and the values of element parameters). When the netlister was
initially developed, element-specific code was written for each element that the netlister was




to be able to handle. This meant that new code had to be written to give the netlister
the capability to handle additional elements, and also that the netlister wouldn’t be able to
handle a library where the element-specific information was encoded in a different manner.
By making appropriate modifications to the netlister’s SKILL code, this restriction was
removed and the resulting netlister is now able to generate VHDL-A output in a way that
is element- and library-independent. Further efforts where pursued to help improve the
performance of the netlister. Test circuits were developed and netlisted to verify the proper
operation of the netlister. During this process, a number of switched-capacitor circuits were
entered into the Cadence environment for future testing.

2.5 Development of a parser for a subset of the VHDL-
A language

CADENCE’s Design Framework II has a component library dedicated to switched-capacitor
circuit design (the scdslib library). This library contains ideal components, such as switches
and clocks, that are not contained in other libraries. In order to make our software compatible
with switched-capacitor designs that use that library, the VHDL-A interface had to be
modified slightly. Specifically, design primitives were added for switches and clocks, and
the VHDL-A parser was modified accordingly. The SKILL code for the HNL netlister also
had to be modified to handle the additional primitives. This is an examples of the netlist
generated from a switched-capacitor design that uses the scdslib library:

architecture structural of example_1lwsrc is
node Vout, Vin, net10, net6, netill;
begin
Vi: entity vdc
generic map( vdc => 1.000000, srcType => "dc", FNpairs => 0)
port map( MINUS => gnd, PLUS => Vin);
I15: entity clock .
generic map( clockName => "phi2", phaseList => "0 1");
I14: entity clock
generic map( clockName => "phii", phaseList => "1 0");
NO: entity scOpamp2
generic map( bw => 1000.000000, Gain => 100000.000000)
port map( negout => gnd, negref => netll, posout => Vout,
posref => gnd);
Cl: entity capacitor
generic map( ¢ => le-12 )
port map( N1 => net10, N2 => net6);
N7: entity spst
generic map( clockName => "phii", Ron => "1")
port map( N1 => netil, N2 => Vout);




end architecture;

2.6 Code development for the power estimator

The overall configuration of the switched-capacitor power estimator was outlined, and the
various data structures that will be needed were defined as dictated by the chosen config-
uration. To keep the code as modular as possible, it was decided to use an object-oriented
approach whenever possible. A single object class will be used to handle all the various
element types in the circuit: element specific code will be written only when it is indis-
pensable to do so (e.g. to evaluate the stamp of that particular element). Overall, the
switched-capacitor power estimator contains the following modules:

1.
2.

An input module

A preprocessing module

A circuit matrix evaluation module

A matrix solution module (to compute average power dissipation)

A Lyapunov solution equation module (to compute the standard deviation of the power
dissipation).

The functionality of those modules is the following:

1.

The input module parses the VHDL-A input netlist and store all the circuit data in
suitable data structures.

The preprocessing module determines the connected components of the circuit during
each clock phase, i.e., it identifies the clusters of nodes that are connected by closed
switches during each clock phase. This information is needed to build the modified
nodal analysis matrices corresponding to each clock phase.

The evaluation module builds one modified nodal analysis matrix for each clock phase,
using the information provided by the preprocessing module.

The matrix solution module computes the expected values of the circuit’s electrical
variables (voltages, currents) by solving a system of linear equations in a way that
takes advantage of the system’s particular structure. The expected average power
dissipation can be computed from this information.

The Lyapunov equation solution module solves the discrete-time Lyapunov equation
and computes the standard deviation of the power dissipation.




After the overall structure of the power estimator was settled upon, the next step was to
determine the appropriate data structures and algorithms that would be needed for the power
estimator. In particular, a necessary preprocessing step is the identification of the connected
components of the circuit during each clock phase. By definition, a connected component
is a cluster of nodes in the circuit that are connected by closed switches. Because the
configuration of the switches changes at each clock phase, so do the connected components.
An efficient method was found for determining the connected components for each phase
of the circuit. With this information available, it is possible to build the modified nodal
analysis (MNA) matrices for each clock phase using the familiar concept of element stamp.
By definition, the stamp of an element contains that element’s contribution to the MNA
matrix. Because the nodes an element is connected to may belong to different connected
components in different clock phases, it is possible for an element to have different stamps
in each clock phase. Once the connected components have been identified, it is possible to
define the stamps of each element in the circuit and use them to build the MNA matrices.
This approach is consistent with the chosen object-oriented approach, according to which
the code is kept as modular as possible, with each module being associated with an object
(in this case, a particular type of circuit element).

After all the necessary data structures were defined, actual coding was undertaken. How-
ever, an examination of the numerical results initially obtained by the switched-capacitor
power estimator revealed that the power dissipation computed by the simulator was some-
times incorrect. The reason was that in order to estimate the power dissipated by a generic
element, one must compute E(vi), where i and v are the current and the voltage across the
element, and E() represents the expected value. In the case of independent sources, the
value of v is known with certainty, which implies that E(vi) = vE(z). Thus in this case
the power dissipated can be computed from a first-order moment (i.e., E(z)). In the case
of op-amps, the values of both v and i are uncertain, which means that one must compute
E(vi). In general, E(vi) is not equal to E(v)E(z) (which is the incorrect assumption that
had been made initially), which means that in this case the power dissipated cannot be
computed simply from first-order moments. Instead, the second-order moment E(vi) must
be computed, which can be done only by solving a discrete Lyapunov equation.

Because the size of the Lyapunov equation can be very large, a literature search was
performed in order to determine if efficient algorithms for the solution of this particular type
of equation had already been published. This search revealed that, although a number of
such algorithms exist, all have drawbacks that severely limit their usefulness. It was therefore
decided to use a “brute force” approach, i.e., to solve the Lyapunov equation using ordinary
Gaussian elimination. Although this method does not try to exploit the particular structure
of the system of equations, it is the most straightforward to implement, and it is reliable
in its numerical performance. Moreover, among the various methods considered, it was
the one that could be implemented in the least time. After this particular method has been
successfully implemented, and its numerical performance can be measured on actual circuits,
we will look for alternative, more efficient algorithms to solve the Lyapunov equation.
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The Lyapunov equation generated by the power estimation algorithm consists of a set of
equations of the following type:

Y.Pi1 Y7 = DP:DY + FQFT.

There is one such equation of each clock phase. The unknowns in this equation are the
entries of the matrix Py, which a symmetric n x n matrix, where n is approximately equal
to the number of nodes in the circuit. Because the matrix Py is symmetric, the number
of unknown entries is n(n + 1)/2. Thus, if there are p clock phases (typically, p = 2 or
p = 4), the total number of unknowns (that is, the size of the overall system that must be
solved) is pn(n + 1)/2. In order to solve this system using ordinary Gaussian elimination,
the equations described above must be assembled in a large system of the type Ax = b,
where x is a vector containing all the pn(n + 1)/2 unknowns. The implementation of this
algorithm requires mapping the entries of the matrices Py into the vector x, and the entries
of Y and Dy into the coefficient matrix A. These modifications were incorporated into the
power estimator code.

In its final implementation, the power estimator does all of the necessary preprocessing
for each phase of the circuit, and computes the average power dissipated by the circuit under
the specified input conditions. The power estimator can read VHDL-A netlists generated
by the netlister previously completed, and it computes an estimate of the average switching
power dissipated by the circuit for the given input statistics. To test the power estimator,
a library containing a number of switched-capacitor circuits was created using CADENCE’s
Design Framework II tools. The size of the circuits ranged from one op-amp and a few
capacitors to several op-amps and tens of capacitors. The netlist generator was then run
on each circuit, and the resulting netlists were used as inputs to the power estimator. The
results are summarized in Table 1:

Table 1: Results of Power Estimation Simulations

Matrix | Switching CPU
Circuit | Size | Power (uW) | time (ms)
SCAmp 14 1.500 250
Biquad 44 137.8 310
Ellipt0 96 12.34 550
Elliptl 60 5.189 350
Ellipt2 66 .2594 340

The operation of the switched-capacitor power estimator and the results of the numer-
ical simulations are described in a paper which was presented at the 1996 International

Conference on Computer-Aided Design.
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Chapter 3

Power Estimation in
Switched-Capacitor Circuits

3.1 Background

A number of low-power designs, such as those for mobile communication equipment, contain
switched-capacitor circuits. In such designs it is important to be able to estimate the power
dissipated by the switched-capacitor portion of the circuit. One of the tasks of this research
project was the development of CAD software for the computation of statistical information
about the power dissipated in a switched-capacitor circuit when corresponding statistical
information about the inputs to the circuit is known. Ordinary circuit simulators are not
suited for this task, because they can only compute the power dissipated by the circuit for
one specific set of input signals. The algorithm does not require Monte-Carlo analyses, and
it accounts for correlation among the inputs. To demonstrate the software’s performance,
numerical results obtained on a number of sample switched-capacitor circuits are reported.

Most of the published work on CAD tools for power estimation concerns itself only with
digital circuits. However, many emerging product technologies, such as personal computing
and communication systems, involve mixed signal processing. Therefore, in order to predict
the power dissipation of such systems, it is necessary to estimate the power dissipated by the
analog portion. In the specific case of switched-capacitor circuits, the total power dissipation
is the sum of two terms: the power absorbed by the op-amps, and the switching power, that
is the power dissipated in charging and discharging the capacitors. In traditional switched-
capacitor designs, the first term is by far the dominant one. The push towards the reduction
of power requirements, however, has spurred the design of op-amps whose power dissipation
is in the tens of microwatts [5]. It is precisely in this type of low-power design that the
estimation of the switching power becomes important, because it is no longer a negligible
fraction of the total power dissipation. It must be noted that in most cases, the power
dissipated by an op-amp can be assumed to be constant, regardless of the applied input [6].
Therefore, only the estimation of the switching power requires nontrivial calculations.

This report describes an algorithm for statistical estimation of power dissipation in
switched-capacitor analog circuits. Note that ordinary circuit simulators are not suited
for this task, because they can only compute the power dissipated by the circuit for one spe-
cific set of input signals. In contrast, the algorithm described here allows the computation
of statistical information about the power dissipated in a switched-capacitor circuit for a
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variety of input signals whose statistics are given. This approach mirrors the one generally
used to estimate power dissipation in digital CMOS circuits. The algorithm can be applied
to any switched capacitor circuit whose elements can be modeled as ideal switches, linear
capacitors, independent and linear voltage-controlled voltage sources, and ideal operational
amplifiers. It does not require Monte-Carlo analyses, and it accounts for correlation among
the inputs to the circuit.

3.2 Statistical analysis of switched-capacitor circuits

The analysis of switched-capacitor circuits using conventional simulation techniques is prac-
tically impossible. For this reason, certain simplifying assumptions about the circuit are
usually made in order to reduce the required computational effort to manageable levels. For
instance, MOSFETS are modeled as ideal switches; moreover, it is assumed that all other
elements in the circuit can be represented by linear capacitors, ideal operational amplifiers,
and independent or linear voltage-controlled voltage sources.

Various methods of analysis have been proposed for circuits of this kind [7, 8, 9]. Broadly
speaking, they all rely on equations resulting from the law of conservation of charge and on
the branch constitutive equations of the memoryless elements. The analysis method used
here is the one described in [8]: at each clock phase, the connected components of the
circuit are built, each component consisting of nodes connected together by closed switches.
The only elements that can connect two different components are capacitors or memoryless
elements (voltage sources, op-amps). For each connected component, charge conservation
equations can be written: the total charge present on all the capacitors connected to a given
component immediately before the switching instant ¢, must equal the total charge present
on the same capacitors immediately after #; plus the charge that has left the component
through the memoryless elements. Thus for each connected component the corresponding
charge conservation equation is:

PN HCIEDWAIED S H 7S

where qf represents the charge on the j-th capacitor, and g¢; is the charge flowing through
the j-th memoryless element. If the j-th capacitor, C;, is connected between nodes j; and
ja, then ¢f = C;(vj, — v;,), and the charge conservation equation can be rewritten as:

> Gl (8) — v (B) + D ai(ts) =
>_ Cilvs, (t) = vin ()

Branch equations for the closed switches and the memoryless elements are appended to the
charge conservation equations. The resulting system has the form [8]:

b et 2
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where v represents the vector of the node voltages, q the charges flowing through the mem-
oryless elements, u the voltages of the independent sources, and t; is the k-th switching
instant. Letting xx = [vT(¢t}),qT(¢{)]T and ux = u(tx), eqn. (3.1) can be rewritten as:

[ Wiev(ti,) ] + { Y ] —
0 Eu(tk) -
= Dixi-1 + Fuyg, (32)

kak

for appropriate matrices Dy and F.

In most switched-capacitor circuits, the switching schedule is periodic: this implies that
Yi;n = Y and Dy = Dy for some positive integer N. Furthermore, it will be assumed
that the inputs to the circuit form a stationary process Markov process of order zero with
mean @ and covariance matrix Q. Then taking the expected value of both sides of eqn. (3.2)

yields:

Y%, = Diexi-1 + Fu, (3.3)
where %, denotes the mean of x;. Because the sequences {Y;} and {D;} are periodic of
period N, so is the sequence {X;}. As a consequence, X;,Xz,...,Xn can be computed as the

solution of the following system of linear equations:

Y]il = Dl)_(N+Fl-l
Yg)_(g - D2i1+Fﬁ

Yyxy = Dyxy-1+Fq,
or, in short: )
(Y - D)k = Iy, (3.4)
where % = [xT,xT...x%]7, 4 = [@TaT...a7]7, and

F = diag(F,F...F)

Y = diag(Y1,Y:...Yn)
D,

. D,

Dy
The dimension of ¥ — D is N - dim(Y), and can therefore be quite large. Fortunately,

because of the particular structure of Y — D, it is possible to decompose it using block LU
decomposition. More precisely, let Y; = LkUk, then it is easy to verify that Y-D= LU
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where:

L ]
_D,U]! L,
L = -D;U;! Ls ,
i -DyUr, Liv
[ U, -L{'D, ]
U, -L;'D,Y;'D,
U = U; -L;'D3Y;'D,Y{'Dy ||
I U'n
and
L'yUN=Yn=

Yy — DNYK,l__lDN_lYﬁl_z, .o -Yl_lDl.

Therefore, it is not necessary to decompose Y: the solution of eqn. (3.4) can be computed
using simply the LU factors of Yq,..., YN-1 and Y'n.

Similarly, let Py be the covariance matrix of the random variable x;. The sequence {Py}
is also periodic of period N, and it can be shown [10] that it satisfies the following difference
equation:

YiP,YT = D,P,_,Df + FQF”. (3.5)

Consequently, letting P = diag(P;,P;...Py) and Q = diag(Q, Q... Q), the matrix P can
be computed as the solution of the discrete Lyapunov equation:

YPYT = DPDT + FQF”. (3.6)

Eqn. (3.6) is linear in the entries of P, and in principle it could be solved using standard
techniques, such as LU decomposition [11]. In practice, because the size of the system in
eqn. (3.6) can be extremely large, it is advisable to compute the solution using special-
purpose algorithms [12].

As will be shown in the next section, the estimation of the power dissipation requires
also the computation of the expected value of (xk — Xi)(Xk-1 — %x-1)T. Letting Prr1 =
(xx — Xk)(Xk—1 — Xk-1)T, it can be shown, after some algebraic manipulation, that the fol-
lowing relationship must be satisfied:

YiPri-1 = DiPro1.

Therefore Py -1 can be computed from Pj_, simply by solving a system of linear equations.
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Figure 2: Power Generated by an Element

3.3 Power estimation

The statistical information about the circuit variables, computed as described in the previous
section, can be used to obtain probabilistic information about the circuit’s power dissipation
in the following way. By power conservation, the power dissipated by the circuit must be
equal to the power delivered by the active elements, namely voltage sources and operational
amplifiers. Consider a generic circuit element, as shown in Fig. 2. The current through the
element, i(t), is always zero, except at the switching instants f;, when it becomes (theo-
retically) infinite. Assuming that the interval [t,, ] contains a single switching instant ¢,
i(t) = q(tx)6(t — tx), where g(tx) is the amount of charge that flows through the element at
time t;, and &(-) is Dirac’s impulse function. The energy delivered by the element at the
switching instant #j is: )
J = q(ts) /t " o(t)8(t — ti) dt.

If the voltage v(t) is not discontinuous at tx, the integral in the expression above has a
well-defined value, namely v(t;); in this case, the energy delivered by the element is: J =
q(tx)v(tx). For example, let the element under consideration be an independent voltage
source, V,,(t) be the source value, and g, be the variable describing the charge flowing
through the source. Then the power delivered by that source over a clock period is:

1 N
I/V'm = T Z V’m,k‘]m,k,
k=1

where Vj, x,qm « are shorthands for V,,(tx),gm(tk), and T denotes the clock period. As a
consequence, the expected value of the power delivered by the source is given by:

— 1 X
Wa = '1_-, E Vm,k(jm,ko (37)
k=1

The evaluation of the power delivered by other active elements (controlled voltage sources
and op-amps) is more difficult, because the voltage across them can have a discontinuity at
the switching instants: in this case the value of the integral [/* v(¢)8(t — t&)dt is not well-
defined. Thus, in the case of a discontinuity in the voltage across the element, the energy
delivered by the element at t; can be as high as:

J = max(vk-1, Vk)qk
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and as low as:
J = min(vk_1, Vk)gk-

To avoid this uncertainty, an average value:

Vg1t Uk
2

can be used. It can be shown that this particular choice satisfies power conservation.
Under this assumption, the average power delivered by the element is given by:

J qk

1

N
oT Y (TrmkOmk + T O o1)- (3.8)

k=1

W =

The quantities Gy, kUmk and GmxUm k-1 are second-order moments, and can be obtained from
the matrices Py and P x_; defined in the previous section. For instance:

dm kVmk = q-m,k'l—)m,k + (qm,k - Qm,k)(vm,k - 6m,k)a

and the last term in the equation above is an entry of the matrix Px. A similar identity,
involving an entry of the matrix P 4_1, can be obtained for gn xUms-1-

3.4 Algorithm implementation

Two things must be accomplished so as to implement the analysis method described in
Section 3.2. First, the connected components of the circuit must be determined at each clock
phase, and the charge conservation and branch constitutive equations must be numbered
accordingly. Second, the system of equations (3.2) must be built at each clock phase from
the circuit netlist. v

The determination of the connected components for an undirected graph is a well-studied
problem and relatively fast algorithms exist to solve it. The treatment of this problem can
usually be found in most introductory books on algorithms such as [13]. By using the
heuristics of union by rank and path compression in the implementation, a practically linear
running time can be obtained [13, p. 449]. Once the connected components have been found,
determining membership in a set is a constant time operation, assuming that indexing into
an array can be done in constant time.

A unique numbering for the system of equations can easily be obtained by a slight
modification to the pseudocode for the connected components presented in [13]. Initially,
each connected component consists exactly of one node, and is assigned a the same number
as the node. When two connected components are merged because they are joined by an
edge (i.e. a closed switch), one of the two component numbers is assigned to the resulting
connected component, while the other is assigned to the switch. When system of equations
(3.2) is assembled, charge conservation equations are numbered according to the connected
components, while each closed switch’s number determines the number of the corresponding
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branch equation. Branch equations for the other memoryless elements are appended as in
ordinary Modified Nodal Analysis. This methodology yields a unique numbering scheme for
all the equations in the system. ,

Once the connected components have been identified, the system of equations can be
built from the circuit netlist by relying on the usual concept of element stamps.

3.5 Numerical results

In order to facilitate the use of our power estimator, it was decided to interface it with an
existing commercial CAD environment. Cadence’s Design Framework II was chosen for this
purpose. Design Framework II provides a set of tools, known as OSS, that allows third-party
developers to incorporate their own simulators into the Cadence system. OSS provides an
interface for the developer which allows the execution of a simulation, the generation of
netlists and input vectors, and the display of simulations results which are consistent with
the interface used by the other tools in the Design Framework II environment.

The first step in integrating a simulator into the Design Framework II environment is
the generation of a netlist in a standard format. The netlist is obtained by traversing the
Cadence database to obtain relevant information about the circuit to be simulated. OSS
provides two tools for automatic netlist generation: HNL and FNL. Both of these netlisters
are capable of producing output in a user-defined format by utilizing the standard Cadence
language, SKILL.

In order to produce a netlist, it was necessary to choose a HDL. Several factors had to be
considered in choosing a HDL. These factors included: portability, popularity among CAD
tool users, availability of the language, and so on. The HDL that was finally chosen was
VHDL-A. This is an analog extension to the digital language VHDL, which the 1076.1 IEEE
Standards Subcommittee is currently developing a standard for. By utilizing the HNL of
Cadence’s 0SS, a rudimentary VHDL-A netlister was developed. A parser for a subset of
the VHDL-A language was developed to allow the simulator to read the resulting netlist.

The simulator was used to calculate the expected power dissipation of a number of
switched-capacitor circuits of varying sizes. In order to expand the library of benchmark
circuits on which to test the power estimator, additional designs were sought from indus-
trial sources. CADENCE contributed the design of a switched-capacitor elliptic filter. Texas
Instruments was also contacted for the purpose of obtaining additional examples of switched-
capacitor circuits to be added to the set of benchmarks. Texas Instrument agreed to provide
one such circuit upon the signing of a nondisclosure agreement by Georgia Tech. Such agree-
ment was signed, and we obtained from Texas Instruments the design of another switched-
capacitor circuit, which has been added to the benchmark library.

The clock frequency for each of these circuit was taken to be 1 MHz. The CPU times
represent the running times of the simulator on a Sparcstation 5/20 running SunOS 4.1.4.
The results of these simulations can be found in Table 2: the second column shows the
dimension of eqn. (3.4) for the corresponding circuit, while the expected power dissipation
is reported in the third column. It is worth repeating that those figures represent only the
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switching power dissipation of the circuit: in order to obtain the total power dissipation, one
must add the power dissipated by the op-amps, which, as mentioned in the Introduction,
can be taken to be a fixed value.

Table 2: Results of Power Estimation Simulation

Matrix | Switching CPU
Circuit Size | Power (uW) | time (ms)
SCAmp 14 1.500 250
Biquad 44 137.8 310
Ellipt0 96 12.34 550
Ellipt1 60 5.189 350
Ellipt2 66 .2594 340

3.6 Summary

An algorithm for statistical estimation of power dissipation in switched-capacitor circuits
has been described. The proposed algorithm computes the mean and the variance of all
variables of interest as the solution of certain sets of linear, algebraic equations. Therefore,
no Monte-Carlo analyses or time-domain simulations of the circuit involved are required. A
potential drawback is that the size of the system of equation that must be solved to compute
P (eqn. (3.6)) can be very large, even for circuits of modest dimensions. On the other
hand, this system of equations must be solved only once. For this reason, trying to keep the
computational effort required to solve the system to a minimum is not as crucial as it is, for
instance, in conventional circuit simulation, where the system must be solved hundreds or
even thousands of times. Moreover, it may be possible to compute the solution using special
algorithms that take advantage of the particular structure and of the sparsity of Y [14].

The algorithm also accounts for any correlation that may exist among the inputs to the
circuit. This is in contrast to some of the published power estimation algorithms for digital
circuits, which assume that the primary inputs to the circuit are statistically independent. In
some cases, this may be an unrealistic assumption: for instance, when the inputs are signals
generated by optical sensors that are part of an optical array. Power estimation algorithms for
digital circuits that do not rely on the uncorrelation assumption usually require a significantly
larger computational effort [2], while the algorithm described here allows the primary inputs
to the circuit to be correlated without affecting the overall computational cost.
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Chapter 4

Power Dissipation and Switching

Order

4.1 Energy dissipation in switching circuits

When simulating switched-capacitor circuits, a number of assumptions are usually made
in order to reduce the computational effort required to manageable levels. The types of
elements contained in the circuit are limited to linear capacitors, ideal operational amplifiers,
independent or linear voltage-controlled voltage sources, and ideal switches. Moreover, it is
assumed that the switch configuration changes instantaneously at each switching instant ¢.
As a consequence of those assumptions, it is possible to show that the voltages in the circuit
are piecewise constant, changing values only at the switching instants; charge flow also occurs
instantaneously at the switching instants, and is zero at any other time [8]. Mathematically
speaking, this means that each branch current is represented by a series of Dirac’s impulse
functions located at the switching instants.

Consider now a generic two-terminal element, such as the one shown in Fig. 3. The total

energy dissipated by this element over the time interval [to, 1] is:
ty ty
J =/ vdg =/ vi dt. (4.1)
ta ta

Assuming that the interval [¢,,1;] contains a single switching instant Z, the current through
the element in Fig. 3 is given by: i(t) = ¢8(t — #), where ¢ is the amount of charge that
flows through the element at time t. If v is continuous at ¢, the integral in eqn. (4.1) has
a well-defined value, namely:

J = qu(tg). (4.2)

Instead, if vis discontinuous at t; (see Fig. 4(a)), the value of the integral is undetermined, as
-the following analysis shows. Suppose that v, instead of having a discontinuity at 2, changes

Figure 3: Power Dissipation in a Circuit Element
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Figure 5: Computing the Energy Dissipated in a Switch

continuously over the interval [tx — €1, 1k + €3], as shown in Fig. 4(b). Depending on the values
of €& and €; and on how v(t) changes over [ty — €1, ¢ + €], the integral [ v(2)6(t — ti)dt
can have any value between min(v(t; ), v(¢})) and max(v(¢;),v(t})). As a consequence, the
integral has no well-defined limit when ¢; and ¢, tend to zero. This means that in order to be
able to evaluate the energy dissipated by an element, whose branch voltage is discontinuous
at the switching instants, a more in-depth analysis of the circuit is required.

A good starting point is provided by the very simple circuit shown in Fig. 5: a capacitor
connected in parallel to a switch. The switch is open for ¢ < {i, and it closes at ¢ = tx. To
simplify notation, v;(t;) (the value of voltage v; immediately before #;) will be denoted by
vy; similarly, v{ = v, (tf) (in this example, v = 0). Before ¢t = t;, the energy stored in

oo 1 . . . .
the capacitor is —2—C’lvl‘2; after ¢t = t; there is no energy in the capacitor, which means that,

. o e 1 .
when the switch closes, it dissipates an amount of energy equal to 5011)1' 2, Noting that the
charge ¢; that flows through the switch at ¢ = ¢; is equal to Cyv;, the amount of energy
dissipated in the switch can be expressed as:

1

This suggests that, if the element in Fig. 3 is a switch, the energy dissipated when the switch
closes is given by J = —v7gq.

The analysis of a more complex example, such as the one shown in Fig 6, reveals some
pitfalls with this expression for the energy dissipated in a switch. First, consider the case in
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Figure 6: Two switches closing at the same time

which both switches close at the same time. A simple analysis shows that:

Q1 = Clvl"-{—Cgv;
g2 = Oy

According to eqn. (4.3), the energy dissipated in the switches is:

1 _ 1 2, 1 - -
J1 = 52)1 Q1 = 2011)1 + 502’01 Vg

1, _ _ 1 _ —
J;) = 5(’02 - )QQ = —2‘021)2 2 - 502'01 Uy

Note that J; +Jo = 3Cyo7 241 02U2 , which means that the principle of energy conservation
is satisfied. On the other hand either J; or J; could be negative, which would indicate that
one of the switches would be generating energy: this, of course, is physically impossible.

To gain further insight into this problem, let us compute the energy dissipated in the
switches when they close not simultaneously, but one before the other. If Sy closes before

S,, it is immediate to verify that:

q = Gy
g2 = Covg

1 _ 1 _2
Jl = = -2-'[)1 qi = 501’01

1 _ 1 _2
Jz = = 5’02 q2 = 502'1)2 s

where v and v refer to the voltage values before either switch closes, and ¢; and g; denote

the charges flowing through the switches at the instant when the switch is closed. 1f S closes

C] vl + 02'02

first, v; and v, settle at an intermediate value ¥ = while S is open and S; is

closed. As a consequence, qi, q2,J; and Jz are given by the following expressions:

g = Cy +Cyvg
= A7 (o o)
e Ci+ C, “2
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Figure 7: The switching order affects energy dissipation

1
Ji = g =

2

N . -, 1 CiC: |, _ —\2
Jo = 2(”2‘”1)‘12—2CI+02(U2_01)

1(Civy + Cov )?
2 Ci+C2

It is immediate to verify that, in either case, J; and J, are positive, as should be expected.
With some algebraic manipulation, it can also be verified that energy is conserved, regardless
of the order in which the switches close. On the other hand, the energy dissipated in a
particular switch does depend on the switching order, even if, in this particular example, the
total energy dissipation is the same in both cases, as it is equal to the energy initially stored
in the capacitors.

That this is not always the case can be seen from the example shown in Fig. 7. This
circuit contains a voltage source, which is an active element: let J; be the energy dissipated
by it. If S; closes before Sy, a charge:

= 22 (o5 - v7)
q3_02+03 s~ V2

flows through the voltage source when S is closed; at the same time, the voltage across the
source drops from vy — v; to zero. According to eqn. (4.3), the energy dissipated by the

source 1s:
— l C2Cs (‘U— _ v-—)2
T 2C,+Cy 2/

Additionally, v, and vs settle at an intermediate value given by:

J3

When S, closes, the charge g, that flows through the switch is equal to:
g2 = (Cy + C3)v = Cyv; + Cavy.

As a consequence, the energy dissipated by each element is as follows:

1
J] = —2'01’01_2
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1(Cavz + C3v3)*

B = 2 C2+Cs
_ 1 CZC,'_’, - -\2
J3 = 2C, + Cs (”3 Uy )

All elements, including the voltage source, dissipate energy, and the total amount of energy
dissipated is equal to the energy initially stored on the capacitors; thus, once again, energy

is conserved.
If S, closes first, the voltage across the voltage source remains equal to Avy. Letting g3

be the charge that flows through the source at this time, and J;2 the corresponding energy
dissipated by the source, one obtains:

g2 = Csvg

J3,2 = A’Ul—q3,2 = AC3vi-U;.

When S; closes, the voltage across the source drops to zero, while more charge flows through
it. An easy calculation shows that the amount of charge flowing through the source and the

corresponding energy dissipation is given by:
Q31 = CsAvy
1 \2
J3,1 = 503 (Avl ) .
Thus, the energy dissipation in each element is:
1
J1 = 501’0;2
1 -2
J, = 5(02 -+ C3)v2

J3

1
k4+kg=§@AqL%;+%n.

Although the principle of energy conservation is still satisfied, in this case the value of J3
can be negative. If so, the voltage source would be delivering energy, and the total energy
dissipated in the switches would be greater than the energy initially stored in the capacitors.
In a physical realization of this circuit, any energy delivered by the voltage source would
have to be drawn from a power supply. This means that, if S; closes before S1, the circuit
will draw energy from the power supply, while this does not happen if S; closes before 5.
Thus, this example shows that the switching order can affect the power dissipated by a

switched-capacitor circuit.
In all the examples examined so far, when the switches were closed one at a time,

eqn. (4.3) always yielded a positive value for the energy dissipated in each switch. Un-
fortunately, this is not always the case, as can be seen by analyzing the network shown in
Fig. 8(a). It is immediate to verify that:

q = Cuy
1, _ _ 1 _2
J1 = -2-('01 — Vg )q1 = 501(1 - A)’Ul .
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Figure 8: Negative Energy Dissipation in a Switch

Thus J; < 0if A > 1. A reason for this nonphysical result can be surmised by replacing the
switch with a resistor, as shown in Fig. 8(b). It can readily be seen that the behavior of this
circuit is described by the following differential equation:

1

'f)l + 'R—Cl'(l - A)'U] = 0,

which is unstable if A > 1. This observation leads to the conjecture that eqn. (4.3) will
always yield a positive value for the energy dissipated in a switch whenever the network,
obtained by replacing the switch with a positive resistor, is stable.

The results obtained from the analysis of the examples in Figs. 5 through 8 can then be
summarized as follows:

e The expression for the energy dissipated by an element, given in eqn. (4.3), appears to
be consistent with the principle of energy conservation.

o If the analysis is carried out under the assumption that multiple switches close at the
same time, eqn. (4.3) can yield a negative number for the energy dissipated by a switch,
which is physically impossible.

e A more realistic assumption about the operation of a switched-capacitor circuit is that
the switches close one at a time. In most cases, this leads to the physically correct
result of positive energy dissipation in the switches.

o Examples can be found, however, in which eqn. (4.3) still yields a negative value for the
energy dissipated in a switch, even if only one switch is closed. It is conjectured that
this is an indication that the circuit obtained by replacing the switch with a positive
resistor would be unstable.

o If active elements are present in the circuit, the total power dissipation can depend on
the order in which the switches are closed.

Formal statements of some of these results, and mathematical proofs of their validity,
will be presented in the next section.
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4.2 Energy conservation

In this section, some of the properties observed in the examples analyzed in the previous
section will be stated formally and proven mathematically. The first step is to extend
eqn. (4.3) to the case when v*, the voltage across the element at time tj, is not zero. The
formula must be extended so that it reduces to eqn. (4.2) when v~ = v*, and to eqn. (4.3)
when v+ = 0. These considerations lead to the following expression for the energy dissipation
in an element: .

J= ”—%"—q. (4.4)
The correctness of this formula is corroborated by the fact, which will be proven next, that
the principle of energy conservation is always satisfied if the energy dissipated in each element
at switching instant ¢; is computed according to eqn. (4.4).

Consider a generic switching circuit containing ¢ linear capacitors and m memoryless
elements (switches, independent voltage sources, linear voltage-controlled voltage sources
and ideal operational amplifiers); let » be the number of nodes in the circuit (excluding
the ground node). Let A be the circuit’s node-branch incidence matrix, with the branches
numbered so that the first ¢ columns of A correspond to the capacitors and the last m to
the memoryless elements. Then A can be partitioned as:

A= [AcAm],

where A, and A,, are n X ¢ and n X m matrices, respectively.

Let qc. = [q1,.--,4.)7 be a vector containing the charges stored in the capacitors, and
let Qm = [ges15-++>9esm]T be another vector containing the charges that flow through the
memoryless elements at switching instant ¢;. Similarly, let e, = [e1,...,e]T and e, =
[€ct1,-- -5 €ctm]T be vectors containing the branch voltages across the capacitors and the
memoryless elements, respectively. Finally, let v = [v,...,v,]7 be the vector of the node

voltages, and define:
+
+ q. — €c
=)L)

Theorem 1 With the variable definitions given above, the following equality holds:

1 1 1
§ejTCIf + §(E$T +en )an = 'Q‘eZch_, (4.5)

where superscripts + and - denote variable values immediately before and after the switching
instant, respectively.

Proof 1 Charge conservation at each node implies that:

S adi+ D ami =20 (4.6)
2 J J
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1:4 =T a
Figure 9: Charge Conservation Equations at a Node

where q.; and g ; represent the charge stored on the j-th capacitor, and the charge flowing
through the j-th memoryless element, respectively (see Fig. 9). The set of n charge conser-
vation equations can be written in vector form as:

Agt = A.qt +A,qn = Aq].
From this equation and from et = ATvt, one obtains:
T T -
etTqt + et an =etTqt =vTAqT = vtTAqC = f ;. (4.7)

Similarly: ’ ’ . . .
ee'qgt+e an=e"q" =v  Aqt = v A.qf = e q. (4.8)

But:

= + + — + o= e Tt
= Zec,jqca Ze CJeca qu'ec,j =€ qq-
J J

Therefore, combining egns. (4.7) and (4.8) yields:

q+ + e qm = e_ch. er_an"H

or, equivalently:

T T -T T __
e: qt+(e:1 +em )qm:ec qc’

which proves the theorem.

Note that %e;"qu = ¥;3Cj(el;)?. Therefore, this term represents the energy stored
in the capacitors at ¢, i.e., immediately after switching instant ¢;. Similarly, the term
1 ‘ch is the energy stored in the capacitors at t;. Finally, according to eqn. (4.4), the

terrn 2(e+T + e, T)qm represents the total energy absorbed by the memoryless elements at
tr. Thus, Theorem 1 states that using eqn. (4.4) to compute the energy dissipated by the
memoryless elements satisfies the principle of conservation of energy.

The analysis of the network of Fig. 8(a) showed that, even if only one switch is closed,
eqn. (4.3) could yield a negative value for the energy dissipated in the switch. It will be
now proven that this cannot happen if the network obtained by replacing the switch with
a positive resistor is stable. For this purpose, let v~ be the vector of the node voltages
identifying the state of the switch-capacitor network of Fig. 10(a) before the switch is closed.
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Figure 10: Replacing a switch with a resistor

It will be assumed that v~ is the quiescent bias point of the network of Fig. 10(a) when
the switch is open. This means that v~ satisfies the branch equations of all the memoryless
elements, except that of the closed switch. After the switch closes, the new state of the circuit
can be found by writing a set of charge conservation equations, as in eqn. (4.6). Expressing
the charges on the capacitors in terms of the node voltages, the charge conservation equations
take on the following form:
Cvt+A,q.=Cv".
The set of branch constitutive equations for the memoryless elements can be written as:
o
b vt =BTvt =5,
bT
Without loss of generality, it can be assumed that the last equation in this set, bLv* = sy, is

the one for the closed switch (v} — v} = 0). Combining these two sets of equations together
yields the following system [8, 15], which determines the state of the network at ¢}

[lgT AmH;]z[C:_]' (4.9)

For notational convenience, it has been assumed that g, ., the charge flowing through the
switch when it closes, is the last entry in q,,. Because v~ is the quiescent bias point of the
network before the switch closes, it satisfies all but the last of the branch equations of the

memoryless elements:
Ty,- — o -
b;v™ =s,, t=1,....m—1.

Consider now the network of Fig. 10(b), in which the switch has been replaced by a
resistor, and assume that v~ is the state of the network at t = 0. The following theorem
shows that the evolution of this network for ¢ > 0 is related to the solution on eqn. (4.9).

Theorem 2 There ezists a constant o such that the voltages and currents in the network of
Fig. 10(b) are given by:

el

im (t) 0 —aqm

where i, is the vector of the currents through the memoryless elements in the network.
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Proof 2 Fort > 0, the evolution of the network of Fig. 10(b) is determined by the followmg
systems af algebraic-differential equations:

C A, vi|i_1]0
o AR L] -10) 1)
where R = diag(0,...,0, R). Using the expressions for v(t) and i, (t) from eqn. (4.10), one

obtains:
CV + Apin = aC(v™ = v¥)e* — aApqume* = 0,

or.

C(vt-v )+ A,.qn=0. (4.12)
The second equation in (4.11) becomes:
BTvt + BT (v™ — v*)e* + aRq,e* = s,
which is equivalent to:
BT (vt —v™) - aRgq,, = 0. (4.13)

Thus v(t), im(t) given in (4.10) are the solution of eqn. (4.11) if and only if the following
equation is satisfied:

[IST -—t’}l{] [v+q—mv- ] = D(a) [ V+(;nv_ } = 0. (4.14)

This equation has a nonzero solution if and only if det D(a) = 0; because of the particular
structure of R, detD(a) = 0 is a first-order polynomial equation in o (as can be seen
by developing det D(a) along the last row of the matriz). Assuming that o is indeed the
solution of this equation, it remains to verify that eqns. (4.12) and (4.18) are satisfied.
FEquation (4.12) is satisfied because it is equivalent to the first equation in (4.9). The first
m — 1 equations in (4.13) are satisfied, because:

bfvt =5, =blv", i=1,...,m—1.

This means that n+m — 1 equations in ({.14), out of n+m, are satisfied. But detD(a) =10
implies that the equations in (4.14) are not independent. Therefore, if the first n + m —1
are satisfied, the last one must be, too.

Corollary 1 If the network of Fig. 10(b) is stable, the energy dissipated in the memoryless
elements between t = 0 and t = +o00 is given by eqn. (4.4). In particular:

+o0
%(vf — v;-")qm,m =/ Rizn’m dt > 0,
0

that is, eqn. (4.4) yields a nonnegative value for the energy dissipated in the switch.
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Proof 3 As a consequence of Theorem 2, every branch voltage in the network of Fig. 10(b)
has the following expression:

v(t) = vt + (v™ — vt)e™,
while the ezpressions for the branch currents through the memoryless elements are given by:
i(t) = —age™.

Therefore the energy dissipated in any memoryless element is:

+o0 +00 + -
J= / vidt = / [vf 4 (v™ —v*)e™|(—age®)dt = vTg+ (v - v+)g = u—v——q.
0 0 2 2
In particular, if the element is resistor R, then vi = Ri2,, vt = v — vf, v~ =0 (because

v~ represents the voltage across a closed switch), which completes the proof.

Corollary 1 provides an additional proof that eqn. (4.4) satisfies the principle of conser-
vation of energy, even if it is only valid when the network of Fig. 10(b) is stable. In this
case, the corollary also shows that eqn. (4.4) will always yield a positive value for the power
dissipated in a switch, if only one switch is closed at a time.

4.3 Power dissipation versus switching order

4.3.1 A graph problem

Theoretically, all the switches in a switched-capacitor circuit that are connected to the same
clock phase close at the same instant. Of course, this is not the case in practice. The examples
analyzed earlier show that the order in which the switches close can affect the circuit’s power
dissipation. In general, this order will be affected by factors, such as parasitic capacitances,
length of clock lines, and so on, which are impossible to predict or control. As a consequence,
it is impossible to predict with certainty the power dissipated by a switching circuit. A more
realistic estimate can be obtained by trying to compute a range of values, within which the
circuit’s power dissipation must fall, regardless of the switching order. This leads to the
problem described below.

At each clock phase, consider the switches that will close during that phase. Assuming
that the switches close one at a time, determine the order which leads to the mazimum (or
minimum) power dissipation in the circuit.

This problem can be represented on a graph in the following way: let s be the number
of switches connected to the clock phase under consideration. The state of each switch
can be represented by a bit: for example, zero for an open switch, and one for a closed
switch. Correspondingly, any configuration of the switches is represented by a binary string
containing s bits. There are 2° possible switch configurations which, represented as binary
strings, form the vertices of an s-cube. Each cube edge corresponds to the closing of one
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Figure 11: The graph representing all possible switching orders

switch; because it is assumed that the switches, once closed, do not reopen, each edge can
be traversed in only one direction. Thus, the vertices and the edges of the s-cube form a
directed graph, such as the one shown in Fig. 11.

Each edge in the graph can be assigned a weight, which is the power dissipated by the
circuit when the switch corresponding to that edge is closed. Initially, all the switches are
open, which is the configuration corresponding to the (00...0) vertex in the cube. Even-
tually, all the switches are closed, which means that the final configuration is the (11...1)
vertex. Thus, finding the switching order that minimizes (maximizes) the circuit’s power
dissipation means finding the shortest (longest) path from O = (00...0) to D = (11...1)
along the cube, where the length of a path is measured as the sum of the weights of the
edges contained in the path: in graph theory, this is known as the single-source shortest paths
problem. This is a well-known problem, and a number of algorithms exist to solve it [16].
Because the graph arising in this specific problem is obviously acyclic, the simplest way to
find the shortest and longest paths from O to D is to traverse the graph in topological order,
in which each vertex is visited only after all its predecessors have been visited. This traver-
sal is made even simpler by the structure of this particular graph, and can be implemented
using a queue, as shown in Fig. 12. The quantity W (v1,v) is the weight of the edge joining

Place O = (00...0) on Queue;
while Queue # 0 {
Longest(v, 0) = max{W (v, p) + Longest(p,O) : p is a predecessor of v};
Shortest(v,0) = min{W (v, p) + Shortest(p,O) : p is a predecessor of v};
foreach successor s of v {
Compute W(s,v);
Add v to Queue;
}
}

Figure 12: Computation of shortest and longest paths

vertices v; and vy, that is, the power dissipated by the circuit when the switch corresponding
to that edge is closed. Obviously, D is the last vertex to be visited, and Longest(O, D) and
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Shortest(O, D) give, respectively, the maximum and minimum power that can be dissipated
by the circuit under all possible switching orders.

4.3.2 Computing the edge weights

The determination of the edge weights requires computing the values of the voltages and
charges in the circuit when a particular switch is closed. This means that a system of linear
equations must be solved for each edge in the graph; since there are s2°~! edges in an s-cube,
in principle this would entail performing s2°~! matrix LU decompositions. By exploiting the
particular structure of the problem, the number of LU decompositions can be reduced, as
explained below.

Each vertex in the s-cube is identified by a certain set of closed switches; an edge leading
out of that vertex corresponds to closing one of the remaining open switches. The new state
of the circuit, after the switch’s closure, is determined by the solution of eqn. (4.9). If the
last unknown is ¢ m (the charge through the closing switch), and the last equation is the
one for the closed switch, then the set of equations in (4.9) has the following form:

Y _1 [q:m]=[‘“ (4.15)

1-e-—1

where entries 1 and -1 in the last row and column of the coefficient matrix corresponds to

nodes i and j (see Fig. 10(a)).
The coefficient matrix in eqn. (4.15) has the form:

R

If Y = LU is the LU decomposition of Y, it is immediate to verify that:

ENRN!

where:
Lu v
Ul = w
t = z—1Tu
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Then the solution of eqn. (4.15) can be computed by forward elimination and back substi-
tution:

Lxg = rp
Qo = —1Tx,
9mm = ‘IO/ t
Ux = Xo— gmmu.

For a given cube vertex, each outgoing edge corresponds to closing a different switch:
everything else in the circuit remains unchanged. This means that the specific switch being
closed will affect only the last row and column of the coefficient matrix in eqn. (4.15). As a
consequence, the LU decompositions of all the matrices corresponding to the edges leading
out of the same vertex can be performed through eqn. (4.16). This reduces the number of
LU decompositions to be performed to one per vertex, that is, 2° for an s-cube.

4.4 Numerical results

The described in the previous section was used to calculate the power dissipation of a number
of switched-capacitor circuits of varying sizes. The circuits ranged from a simple amplifier
to various types of elliptic filters. The clock frequency for each of these circuit was taken
to be 1 MHz. The results of these simulations can be found in Table 3: the second column
shows the dimension of eqn. (4.5) for the corresponding circuit, while the the third and fourth
columns report the minimum and maximum power dissipation, respectively. The CPU times
represent the running times of the simulator on a Sparcstation 5/20 running SunOS 4.1.4.

It is worth pointing out that the figures reported in Table 3 represent only the switching
power dissipation of the circuit, that is, the power dissipated in charging and discharging the
capacitors. In a physical circuit, an additional source of power dissipation is the static power
absorbed by the operational amplifiers, which is not included in the ideal op-amp model.
The computation of this power is trivial, as it is equal to the supply voltage times the bias
current drawn by the operational amplifiers. Adding this value to the switching power given
in Table 3 yields the total power dissipation of the circuit.

4.5 Summary

This chapter has explored a number of issues related to the evaluation of the power dissipated
in a switching circuit. It has been shown that the formula normally used to compute the
power dissipated in an element can be extended to the case when the current through the
element is a Dirac impulse, and the voltage across the element is discontinuous. It has also
been proven that such extension satisfies the principle of conservation of energy.

The analysis of a number of selected switched-capacitor circuits has shown that caution
must be exercised in the computation of power dissipation, because the assumption that two
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Table 3: Effect of Switching Order on Power Dissipation

Matrix Min. Max
Circuit | size | power (uW) | power (uW)
SCAmp 14 1.1 1.3
Biquad 44 138 151
Ellipt0 96 9.34 15.5
Ellipt1 60 5.2 7.6
Ellipt2 66 .29 1.34

or more switches close at the same time can lead to nonphysical results. This difficulty does
not occur if the switches are closed one at a time; in this case, however, it has been shown
that the power dissipation is affected by the switching order. This observation raises the
question of how to compute the maximum and minimum power that can be dissipated by a
switching circuit.

It has been demonstrated that this is equivalent to the problem of finding the shortest and
longest paths between two points in a weighted directed graph (the so-called single-source
shortest paths problem). Because the graph that arises in this particular instance is acyclic,
the shortest and longest paths can be found simply by traversing the graph in topological
order. Most of the computational effort is spent in determining the edge weights, which
correspond to the power dissipated in the circuit when a particular switch is closed. The
computation of each edge weight requires the solution of a system of linear equations, and
it has been shown that the computational effort can be reduced by exploiting the particular
structure of the coefficient matrices of those systems. Finally, the algorithm has been tested

on a number of switched-capacitor circuits.
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Chapter 5

Power Estimation in
Continuous-Time Circuits

5.1 Mathematical Framework

The behavior of a time-invariant lumped-element circuit is completely characterized by the
following Modified Nodal Analysis (MNA) equations [17):

x = —f(x) + u, (5.1)

where x is the state vector (capacitor charges and inductor fluxes) and u is the vector of
inputs to the circuit (represented by independent sources). The goal is to obtain information
about the statistics of x (e.g., its mean and covariance matrix) from corresponding informa-
tion about u. For this purpose, the inputs to the circuit will be modeled as a Wiener process
with mean 0 (if the mean of the inputs is not 0, we write u = @ + G, where u is the mean
of u, and we define a new function f(x) = f(x) 4+ @ ). Under these assumptions, it can be
shown [10] that x(2) is a realization of a Markov process whose probability density p(x,t) is
a solution of the Fokker-Plank equation:

0
L= [tep+57- (@)
Because we are only interested in the stationary distribution of x, g = 0 and the above
equation becomes:
1
0=V [tx)p+ 37+ (@p)] - (5:2)

In general, the solution p(x) of the above equation cannot be expressed in closed form.
However, an approximate solution can be computed numerically as explained below. The
method is better understood by examing first the simple case when f is a linear function of
the form f(x) = Ax. Then eqn. (5.2) becomes:

v [Axp+ 3 (@) =0, (5.3)

or, in short:
Fp=0,
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where F denotes the Fokker-Plank operator on the left-hand side of eqn. (5.3). Let wo(x) =
e~ where ¢(x) = % Tp-1x, and P is the solution of the equation: '

AP + PAT = Q. (5:4)

It can be shown that wo(x) satisfies eqn. (5.3). Therefore p(x) = cowo(x), with o chosen
so that [ p(x)dx = 1, is the solution of eqn. (5.2) when f(x) = AX, i.e., when eqn. (5.1)
is linear. This shows that the probability distribution of all voltages and currents in a linear
circuit can be ezpressed in closed form. In particular, the probability distribution is gaussian
with covariance matrix P. Thus, the statistical distribution of all voltages and currents in a
linear circuit is determined completely by the solution of eqn. (5.4), which is a set of linear
algebraic equations in the entries of P. Numerous methods for the solution of eqn. (5.4) have
been published in the literature [18, 19].

If the circuit is nonlinear, the solution p(x) of eqn. (5.2) cannot be expressed in closed
form. However, relying on the knowledge of the expression for p(x) found in the linear case,
an approximate solution can be computed numerically in the following way. Let:

f(x) = A(x — %o) +r(x),

be a first-order series expansion of f around Xo, where A = ——| and X, is a solution of

ox
Xo
the equation f(x) = 0. Without loss of generality, we can assume that xo = 0 (otherwise it
can be made so by a translation of the reference system, which leaves eqn. (5.2) unchanged).
Then eqn. (5.2) can be rewritten as:

v. [AXP + %V - (Qp)] ==V [r(x)p], (5.5)

or, in short:

Fp=-V-[r(x)p] (5.6)
An approximate solution of eqn. (5.6) can be computed by using a series expansion for

p(x) [20]:
p(X) = D cawn(x) = 3 cawo(X)ha(x), (5.7)

where the functions h,(x) are Hermite polynomials of increasing order. It can be shown that
the functions wy,(x) are eigenvectors of the Fokker-Plank operator F, i.e., that:

Fw, = Aw,.
Therefore substituting the series expansion from eqn. (5.7) in eqn. (5.6) the following equa-

tion is obtained:
Y eadnwn(x) = =V - [r(x)p).
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The coefficients ¢, must satisfy the following relationships [20]:

Cun = —/V - [r(x)plon(x) dx, (5.8)

where the functions v,(x) are the eigenvectors of the adjoint of the Fokker-Plank operator
F:
FTo, = Aoy,

Using Stokes’ theorem, it can be shown that:
- / V - [r(x)p]on(x) dx = / p < r(x), Vou(x) > dx,
so that eqn. (5.8) can be rewritten in the following form:
Chdn = /p < r(x), Vo,(x) > dx =
= Yo / wi(x) < 1(x), Vou(x) > dx = 3 cxain. (5.9)

k k
The values of the coefficients aj, can be computed by numerical integration:

Agn = /wk(x) < r(x), Vo, (x) > dx.

If the series expansion for p(x) is truncated after a finite number of terms, eqn. (5.9) translates
into a set of linear equations:

AoCo = @poCo + aroc1 + ... + anoCN
Adicr = agico +ape + ...+ anien
ANCN = aonCo + ainc + ...+ annNen

The solution to this set of linear equations, together with the requirement that / p(x)dx =1,

determines the values of the coefficients ¢,. Once the coefficients ¢, are known, it is easy to
obtain any statistical parameter of the random variable x. For instance, the mean X can be
computed by evaluating the following integral numerically:

X = /xp(x) dx = Xn:cn/an(x) dx

(this value of X should be interpreted as a correction to xo, which gives a first-cut approxi-
mation of the mean of x, based on a linear approximation of f(x)).

In conclusion, even when the circuit is nonlinear, the computation of the approzimate sta-
tistical distribution of the circuit voltages and currents can be performed in a straightforward
way. In addition to the computation of the matrix P, the only other required operations
are numerical quadrature (to evaluate integrals) and the solution of an additional set of
linear equations to compute the coefficients ¢,,. Therefore, the method described above is an
efficient and reliable approach to the problem of power estimation in analog circuits.
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5.2 Numerical Solution of the Fokker-Plank Equation

Given the ordinary differential equation:
Xx=—-Ax+u,

the associated stationary Fokker-Plank equation is:

V- [Axp+ 59 (@p)] =0.

(5.10)

(5.11)

We want to find the eigenvalues, A,., and the associated eigenfunctions, p,, of this equation,

that is, the solutions of the following partial differential equation:
V. [Axpn +-V. (Qpn)] = AnPn-

We will show that the eigenfunctions can be expressed as:

pu(X) = e vy (vTx),

where ¥(x) = -lz-xTP’lx, P is the solution of the Lyapunov equation:

AP + PAT = Q,

and H,(-) is an Hermite polynomial of order n.
Let ¢,(x) = H,(vTx), so that p, = e ¥¢,. Then:

V.p=—¢e VP lx+ e ¥V . b, =
—pa P Ix+ €YV - 4.

Since V - (Qp.) = QV - p,, we have:

V. [AXPn+ V- (Qpn)] =

V- [Axpn — %anP' X + %6_¢QV . ¢n] =

V. [p,, (A _ %QP“) x] + %v Qv - 4]

But V- (fw) =< V. f,w>+fV-w, therefore:

V-[n(A—%QP'l)xJ _

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

< —4,eVP x4+ €YV - é, (A - %QP‘I) X > 4patr (A _ %QP'I) . (5.17)
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But < ¢,e VP Ix, (A — %QP"I) x >= 0, because:

< Plx, (A - -;-QP“) > = <x, (P“A - %P"AP") x>  (5.18)

1

<x, (P“A - -;-P“AP“) x> = <X (ATP“ - EP‘IQP‘I) x>. (519

Combining eqns. (5.18) and (5.19), one obtains:

< P 1x, (A - %QP*) >=<x,(PTA+ATP - PTIQP)x >.

I
2
But:

P!A + ATP' —P'QP' =P"Y(AP + PAT - Q)P =0,

which proves the claim.
Similarly, tr (A — %QP'I) = 0, because:

tr (A - %QP‘I) = tr (AP _ %Q) tr(P1)
tr(AP) = tr(PAT)
tr (AP - —12—Q) = %tr(?AP -Q)=
—;—tr(AP +PAT - Q) =0.
As a consequence, eqn. (5.16) becomes:
V- [Axp. 439 ()] =
eV <V b, (A - %QP'I) X > —%e"" <P'x,QV - ¢n > +
LYY [QV -] =
eV <V, (A-QP")x > +%e"”V (QV - ¢). (5.20)
But: A — QP! = (AP — Q)P~! = —PATP~!, 5o that:
V- [Axpa 5V (@) =
—e¥ < P1APV - ¢,,x > +%e—¢v (QV - ¢,), (5.21)

and eqn. (5.12) becomes:

%”V (QV - ¢n) — €Y <PT'APV - ¢, X >= Ane ¥,
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or, equivalently:

%v QY- 4a) = < PTLAPY - 61, x >= M. (5.22)
Since ¢, (x) = Hn(< v,x >), we have:

V-¢. = vH,
V- (QV-4,) = <Qv,v>H,.

Let v be an eigenvector of P~!AP, namely: P'APv = pv. Then eqn. (5.22) can be
rewritten in the following way:

1
§<Qv,v>H,’{—p<v,x>H;=)\an,

or, equivalently:

An
H,Ill - 2_<_Q—\l’t\-/—; <V, X> I{,,1 - 2m—Hn = 0. (523)

Since the n-th Hermite ploynomial satisfies the differential equation:
H!(t) — 2tH](t) + 2nH,(t) = 0,

the function p,(x) = e ¥® H,(< v,x >) is an eigenfunction of the Fokker-Plank equation

if we choose:

<Qv,v> = pu
A = —np.
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Appendix

1 Sample SKILL File for HNL Netlister

; This function prints out the line for an NMOSfet element. It is used by
; the element ’nmos’ in sample circuit.

procedure( hnlCktsimPrintNMOSfetElement ()
let( ( tmpString0 )
sprintf( tmpString0
"  nm)s: nmos generic map (%s, %s)"
hnlMapInstName( hnlCurrentInstName )
hnlCktsimGetPropVal( "w"
hnlCktsimGetPropVal( "1" )
)
hnlPrintString( strcat( tmpString0 "\n" ) )
t
)
let( ( tmpString )
sprintf ( tmpString
"\t port map (D => %s, G => Us, S => s, B => Us);"
hnlCktsimNetOnTerm( "D" 0 )
hnlCktsimNetOnTerm( "G" 0 )
hnlCktsimNetOnTerm( "S" 0 )
hnlCktsimNMOSBulkNetName
)
hnlPrintString( strcat( tmpString "\n" ) )
t

; This function prints out the model statement for a mosfet model. It is
; used by elements ’nmos’, ’pmos’ in the sample circuit.
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procedure( hnlCktsimPrintM0SfetModel()
hnlPrintString("mosfet model\n")

.
3
.
?

.
3

b
3

.
3

let( ( tmpString )
if( hnlIncrementalMode

then sprintf( tmpString ".model %s ¥s"
hnlCktsimUniqueBlockName( hnlCurrentMaster )

hnlCurrentMaster~>modelType )

else sprintf( tmpString

" model Y%s Y%s"

hnlCktsimUniqueBlockName( hnlCurrentMaster )

hnlCurrentMaster~>modelType )

)

hnlCktsimSprintf( tmpString "%s gamma=)s" tmpString
hnlCktsimGetPropVal( "gamma" ) )

hnlCktsimSprintf( tmpString "%s lambda=)s" tmpString
hnlCktsimGetPropVal( "lambda" ) )

if( hnlIncrementalMode

then fprintf( hnlIncludeFile strcat( tmpString "\n" ) )
else hnlPrintString( strcat( tmpString "\n" ) )

)

; This procedure prints out the line for a PMOSfet element.
; the element ’pmos’ in the sample circuit.

hnlMapInstName( hnlCurrentInstName )
procedure( hnlCktsimPrintPMOSfetElement ()

let( ( tmpString0 )
sprintf( tmpString0

"  pm¥s: pmos generic map (%s, %s)"
hnlMapInstName( hnlCurrentInstName )

hnlCktsimGetPropVal( "w" )
hnlCktsimGetPropVal( "1" )

)

hnlPrintString( strcat( tmpString0 "\n" ) )

t
)

let( ( tmpString )
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sprintf( tmpString
"\t port map (D => %s, G => Us, S => s, B => s);"
hnlCktsimNetOnTerm( "D" 0 )
hnlCktsimNetOnTerm( "G" 0 )
hnlCktsimNetOnTerm( "S" 0 )
hnlCktsimPMOSBulkNetName
)
hnlPrintString( strcat( tmpString "\n" ) )
t

; This procedure prints out the line for a resistor element. It is used by
; the element "resistor" in the sample circuit.

procedure( hnlCktsimPrintResistorElement ()
let( ( tmpString )
sprintf( tmpString
" %s: resistor generic map (%s)\n\t port map (p => %s, m => ¥s);"
hnlMapInstName( hnlCurrentInstName )
hnlCktsimGetPropVal( "r" )
hnlCktsimNetOnTerm( "PLUS" 0 )
hnlCktsimNetOnTerm( "MINUS" 0 )
)
hnlCktsimSprintf( tmpString ")s" tmpString )
hnlPrintString( strcat( tmpString “\n" ) )
t

; This procedure prints out the line for a capacitor element. It is used
; by the element ’capacitor’ in the sample circuit.

procedure( hnlCktsimPrintCapacitorElement ()
let( ( tmpString )
sprintf( tmpString
"  %s: capacitor generic map (%s)\n\t port map (p => Ys, m => ¥s);"
hnlMapInstName( hnlCurrentInstName )
hnlCktsimGetPropVal( "c" )
hnlCktsimNetOnTerm( "PLUS" 0 )
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hnlCktsimNetOnTerm( "MINUS" 0 )
)
hnlCktsimSprintf(tmpString "%s" tmpString)
hnlPrintString( strcat( tmpString "\n" ) )
t .
)
)

procedure( hnlCktsimPrintVCIElement ()
let( ( tmpString )

sprintf( tmpString

" Y%s: VCI generic map (%s)\n\t- port map (p => %s, m => Ys, cp = > Us, cm => Us);
hnlMapinstName( hnlCurrentInstName )
hnlCktsimGetPropVal( "G" )
hnlCktsimNetOnTerm( "p" 0 )
hnlCktsimNetOnTerm( "m" O )
hnlCktsimNetOnTerm( "cp" 0 )
hnlCktsimNetOnTerm( "cm" 0 )

)

hnlCktsimSprintf (tmpString "%s" tmpString)

hnlPrintString( strcat( tmpString "\n" ) )

t

2 LEX Input File for VHDL-A

A

[HFdkokkokkkkckkkk VHDL-A scanner in LEX format skkskdkokkokkk

*
* Derived from a scanner of the ALLIANCE CAD toolset,

release 1.1, written by:

*

MASI/CAO-VLSI CAD Team

Laboratoire MASI/CAO-VLSI

Tour 55-65, 2eme etage, Porte 13

Universite Pierre et Marie Curie (PARIS VI)
4, place Jussieu 75252 PARIS Cedex 05, FRANCE

LR R JEE IR K B 2

and further modified by:
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Thomas Dettmer

Dortmund University

Dept. of Computer Scienc, LS1

PB 500 500

D-44221 Dortmund (Germany)

Phone: +49-231-755-6464

e-mail: dettmer@lsl.informatik.uni-dortmund.de

¥ OF X X ¥ O ¥ F *

e 3k ok ok 3 3k ok 3k ok ok sk ok ok ok sk ks 3 ok dk s ke ok ak ok s ok ok 3k ok s ok ke ok ok ok ak ok sk ok ok 3k ok ok ok ok ok ok dk ok 3k %k %k

The original file, obtained from pub/src/VHDL/Grammar at
ftp.cs.utwente.nl contained the following notices:

This file is not intended to be used for commercial purposes
without permission of the University of Dortmund

NOTE THAT THERE IS NO WARRANTY FOR CORRECTNES, COMPLETENESS,

SUPPORT OR ANYTHING ELSE.
sk ke ok ok ok bk ko ook K ok K ok e ok ok ok ok Kok ok ke k ko ok o sk ok s sk skok ok ok ok ok ok sk ok ok ok /

* ¥ O F K K X X ¥ *

#include "vhdllex.h"

w3}

UCLETTER [A-Z]

DIGIT [0-9]

SPECCHAR [\#\&\’\ (\)\k\+\ N -\ /N \\=\DA ]
SPACE [ \t]

FEFFECT [\t\v\r\1\f]

EOL \n

LCLETTER [a-2z]

OTHERCHAR [\ !\$\@\?\[\\NIN VAN

GRCHAR ({BASEGRCHAR}|{LCLETTER} | {OTHERCHAR})
BASEGRCHAR ({UCLETTER}|{DIGIT} |{SPECCHAR} |{SPACE})
LETTER ({UCLETTER}|{LCLETTER})

LETTORDIGIT ({LETTER}!{DIGIT})

DLIT {INT}(\.{INT})?({EXP})?

INT {DIGIT}(_7{DIGIT})=*

EXP ([eE] [-+]7{INT})

BASE {INT}
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BINT {EDIGIT}(_7{EDIGIT})=*
EDIGIT ({DIGIT}|[a-fA-F])
BSPEC (BIblOlolX|x)

Wh

{SPACE} { /* nothing */ }

\& { ECHO; return(T_Ampersand); }
\’ { ECHO; return(T_Apostrophe); }
\( { return(T_LeftParen); }

\) { return(T_RightParen); }

"xx" { ECHO; return(T_DoubleStar); }
\* { ECHO; return(T_Star); }

\+ { ECHO; return(T_Plus); }

\, { return(T_Comma); }

\- { ECHO; return(T_Minus); }
":=" { ECHO; return(T_VarAsgn); }
\: { return(T_Colon); }

\; { return(T_Semicolon); }

n¢=" { ECHO; return(T_LESym); }
">=" { ECHO; return(T_GESym); }
\< { ECHO; return(T_LTSym); }

\> { ECHO; return(T_GTSym); }

= { ECHO; return(T_EQSym); }

\/= { ECHO; return(T_NESym); }
"=>" { return(T_Arrow); }

ne>" { ECHO; return(T_Box); }

\| { ECHO; return(T_Bar); }

I { ECHO; return(T_Bar); }

\. { ECHO; return(T_Dot); }

\/ { ECHO; return(T_Slash); }

{LETTER} (_?{LETTORDIGIT}) * {
int itoken;
itoken=find_mc(yytext);
if (itoken== -1)
{ TokenValue *tkvalue = (TokenValue *) malloc( sizeof (TokenValue) );
tkvalue->Length=strlen(yytext);
tkvalue->Value = (char *) malloc(tkvalue->Length + 1);
strcpy (tkvalue->Value, yytext);
tkvalue->TokenType = T_Identifier;
#ifdef YYDEBUG
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tkvalue->Position = yycolumno;
tkvalue->Line = yylineno;
#endif /* YYDEBUG */
yylval.Ptr = (VoidStar) tkvalue;
return ( tkvalue->TokenType );
}

else
{ return ( itoken ); }
}

({DLIT}) | ({BASE}#{BINT}(\.{BINT}) 7#({EXP})?) | ({BASE}: {BINT}(\.{BINT})?: ({EXP})?) {
TokenValue *tkvalue = (TokenValue *)

malloc( sizeof(TokenValue) );
tkvalue->Length=strlen(yytext);

tkvalue->Value = (char *) malloc(tkvalue->Length + 1);
strcpy(tkvalue->Value, yytext);

tkvalue->TokenType = T_AbstractLit;

#ifdef YYDEBUG

tkvalue->Position = yycolumno;

tkvalue->Line = yylineno;

#endif /* YYDEBUG */

yylval.Ptr = (VoidStar) tkvalue;

return ( tkvalue->TokenType );

¥

> ({GRCHAR} I\"I\%)’ { ECHO; return ( T_CharacterLit ); }

(\"({GRCHAR} | (\"\") 1N *\") | (\% ({GRCHAR} | (\%\%) IN")*\%) {
ECHO; return ( T_StringLit ); }

{BSPEC} (\"{EDIGIT}(_7{EDIGIT})*\" I\%{EDIGIT} (_?{EDIGIT})*\%4) {
ECHO; return ( T_BitStringlit ); }

\n { /* end of line */
MVL_LINNUM++;

/* tobuf ( "\n%4d\t", MVL_LINNUM) ;x*/
yycolumno=0;

/*return(T_NEWLINE) ;*/

}

\-\-.*%$ { /* comment */ }
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. { ECHO; /*return (T_UNKNOWN);*/ }

W
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3 YACC Input File for VHDL-A

[**kkxkx Syntax for a subset of VHDL-A in YACC format kx¥¥skk**/

A

#include <stdio.h>
#include "hdl.h"

extern char yytext[];
extern int yylineno;

n}

%union{
int Ivalue;
VoidStar Ptr;

¥

%start Start

%token
T_ACCESS
T_AFTER
T_ALIAS
T_ALL

T_AND
T_ARCHITECTURE
T_ARRAY
T_ASSERT
T_ATTRIBUTE
T_BEGIN
T_BLOCK
T_BODY
T_BUFFER
T_BUS

T_CASE
T_COMPONENT
T_CONFIGURATION
T_CONSTANT
T_DISCONNECT
T_DOWNTO
T_ELSE
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T_ELSIF
T_END
T_ENTITY
T_EXIT
T_FILE
T_FOR
T_FUNCTION
T_GENERATE
T_GENERIC
T_GUARDED
T_IF

T_IN
T_INOUT
T_IS '
T_LABEL
T_LIBRARY

T_LINKAGE
T_LOOP
T_MAP
T_NAND
T_NEW
T_NEXT
T_NODE
T_NOR
T_NULL
T_OF

T_ON
T_OPEN
T_OR
T_OTHERS
T_OUT
T_PACKAGE
T_PORT
T_PROCEDURE
T_PROCESS
T_RANGE
T_RECORD
T_REGISTER
T_REPORT
T_RETURN
T_SELECT
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T_SEVERITY
T_SIGNAL
T_SUBTYPE
T_THEN
T_TO
T_TRANSPORT
T_TYPE
T_UNITS
T_UNTIL
T_USE
T_VARIABLE
T_WAIT
T_WHEN
T_WHILE
T_WITH
T_XOR

/* VHDL binary operators */

%nonassoc T_EQSym T_NESym T_LTSym T_LESym T_GTSym T_GESym
%left T_Plus T_Minus T_Ampersand

%left MED_PRECEDENCE

%léeft T_Star T_Slash T_MOD T_REM

%nonassoc T_DoubleStar T_ABS T_NOT MAX_PRECEDENCE

/* misc syms */

%token T_Apostrophe
T_LeftParen
T_RightParen
T_Comma

T_VarAsgn

T_Colon
T_Semicolon

T_Arrow
T_Box
T_Bar
T_Dot

Ytoken < Ptr > T_Identifier
T_AbstractLit
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T_CharacterLit

T_Stringlit
T_BitStringlit

%type < Ptr >
ArchBody
ArchDecl
ArchDeclList
ArchHeader
ArchStmt
ArchStmtList
AssocActual
AssocElnmt
AssocFormal
Assoclist
BlockDeclItem
CompAsp
CompInstStmt
ConcurStmt
EntityAsp
GenericMap
InstUnit
NodeDecl
NodeList
PortMap
SignallList

Wh
Start:
| DesignList

)

Designlist:
ArchBody | DesignList ArchBody

3

[* ——=-—---oo- ARCHITECTURE BODY ---=-=-----====== */
ArchBody:

{ $$ = HDLArchBodyBefore(); }
ArchHeader ArchDecl T_BEGIN ArchStmt ArchEnd T_Semicolon
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{ $$ = HDLArchBodyAfter($2, $3, $5); }

’

ArchHeader:
T_ARCHITECTURE T_ldentifier T_OF T_Identifier T_IS
{ $$ = HDLArchHeader($2, $4); }

?

ArchDecl:
{ $¢ = (VoidStar) NULL; }
| ArchDeclList { $$ = HDLArchDecl($1); }

ArchDeclList:
BlockDeclItem { $$ = HDLCatNodeLists( (VoidStar) NULL, $1); }
| ArchDeclList BlockDeclItem { $$ = HDLCatNodeLists($1, $2); }

ArchStmt:
{ $$ = (VoidStar) NULL; }
| ArchStmtList { $$ = HDLArchStmt($1); }

’

ArchStmtList:
ConcurStmt { $$ = HDLNewListElmt((VoidStar) NULL, $1); }
| ArchStmtList ConcurStmt { $$ = HDLNewListElmt($1, $2); }

H

ArchEnd:
T_END | T_END T_ARCHITECTURE

BlockDeclItem:
NodeDecl

| SignalDecl { $$
| ConfigSpec { $$

2

(VoidStar) NULL; }
(VoidStar) NULL; }

NodeDecl:
T_NODE NodeList T_Semicolon { $$ = $2; }

3
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NodeList:
T_Identifier { $$ = HDLNewListElmt((VoidStar) NULL, $1); }
| NodeList T_Comma T_Identifier { $$ = HDLNewListElmt($1, $3); }

]

SignalDecl:
T_SIGNAL SignallList T_Semicolon

3

SignalList:
T_Identifier | SignalList T_Comma T_Identifier

ConfigSpec:
T_FOR CompSpec BindIndic T_Semicolon

2

CompSpec:
InstList T_Colon T_Identifier

3

InstList:
LabelList | T_OTHERS | T_ALL

3

LabelList:
T_Identifier | LabelList T_Comma T_Identifier

.
3

BindIndic:
| T_USE EntityAsp GenericMap PortMap

2

EntityAsp:
T_ENTITY T_Identifier ArchlIdent { $$ = $2; }

3

Archldent:
| T_LeftParen T_Identifier T_RightParen

3
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ConcurStmt:
CompInstStmt

CompInstStmt:
T_Identifier T_Colon InstUnit GenericMap PortMap T_Semicolon
{ $$ = HDLComponentInst($1, $3, $4, $5); }

]

InstUnit:
CompAsp | EntityAsp

CompAsp:
T_Identifier | T_COMPONENT T_Identifier {$$ = $2;}

)

GenericMap:
{ $$ = (VoidStar) NULL; }
| T_GENERIC T_MAP T_LeftParen AssocList T_RightParen { $$ = $4; }

H

PortMap:
{ $$ = (VoidStar) NULL; }
| T_PORT T_MAP T_LeftParen AssocList T_RightParen {$$ = $4; }

H

AssocList:
AssocElmt { $$ = HDLNewListElmt((VoidStar) NULL, $1); }
| AssocList T_Comma AssocElmt { $$ = HDLNewListElmt($1, $3); }

]

AssocElnmt:
AssocActual | AssocFormal T_Arrow AssocActual {$$ = $3;}

AssocFormal:
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T_Identifier

’

AssocActual:
T_Identifier | T_AbstractLit

W
extern FILE *yyout;

void yyerror(str)
char* str;

{
fprintf( yyout, "ERROR: %s at line %d while reading “%s’\n", str,
yylineno, yytext );

¥
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